Constructing Hydraulic Robot Models Using Memory- Based Learning

نویسنده

  • Murali Krishna
چکیده

Hydraulic machines used in mining and excavation applications are non-linear systems. Besides the nonlinearity due to the dynamic coupling between the different links there are significant actuator non-linearities due to the inherent properties of the hydraulic system. Optimal motion planning for these machines, i.e. planning motions that optimize a user-selectable combination of criteria such as time, energy etc., would help the designers of such machines, besides aiding the development of more productive robotic machines. Optimal motion planning in turn requires fast (computationally efficient) machine models in order to be practically usable. This work proposes a method for constructing hydraulic machine models using memory-based learning. We demonstrate the approach by constructing a machine model of a 25-ton hydraulic excavator with a 10m maximum reach. The learning method is used to construct the hydraulic actuator model, and is used in conjunction with a linkage dynamic model to construct a complete excavator model which is much faster than an analytical model. Our test results show an average bucket tip position prediction error of 1m over 50 seconds of machine operation. This is better than any comparable speed model reported in the literature. The results also show that the approach effectively captures the interactions between the different hydraulic actuators. The excavator model is used in a time-optimal motion planning scheme. We demonstrate the optimization results on a real excavator testbed to underscore the effectiveness of the model for optimal motion computation. Portions of this paper were presented at the IEEE Intelligent Robot Systems Conference, Victoria, British Columbia, Canada, 1998. 1. Graduate Student, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213 ([email protected]) 2. Research Scientist, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213 ([email protected])

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing Hydralic Robots Models Using Memory-Based Learning

Hydraulic machines used in mining and excavation applications are non-linear systems. Besides the nonlinearity due to the dynamic coupling between the different links there are significant actuator non-linearities due to the inherent properties of the hydraulic system. Optimal motion planning for these machines, i.e. planning motions that optimize a user-selectable combination of criteria such ...

متن کامل

Hydraulic System Modeling through Memory - based Learning Murali Krishna

Hydraulic machines used in a number of applications are highly non-linear systems. Besides the dynamic coupling between the different links, there are significant actuator non-linearities due to the inherent properties of the hydraulic system. Automation of such machines requires the robotic machine to be atleast as productive as a manually operated machine, which in turn make the case for perf...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

بهبود یادگیری رفتار روبات سیار دارای خطا در سنسورهای آن با استفاده از شبکه بیزین

In this paper a new structure based on Bayesian networks is presented to improve mobile robot behavior, in which there exist faulty robot sensors. If a robot likes to follow certain behavior in the environment to reach its goal, it must be capable of making inference and mapping based on prior knowledge and also should be capable of understanding its reactions on the environment over time. Old ...

متن کامل

Constructing Fast Hydraulic Robot Models for Optimal Motion Planning

Computing optimal motions for any robot requires a good model, and a method to compute the optimal motions using that model. As research is conducted into automating operations in construction, excavation etc. there arises a need to compute optimal motions for the hydraulic machines used in these areas. Hydraulic machines disallow a simple extension of work done previously on optimal motion pla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999